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Abstract—In this paper we introduce and discuss the Build-
Master framework. This framework supports the design space
exploration of application specific VLIW processors and offers
automated caching of intermediate compilation and simulation
results. Both the compilation and the simulation cache can greatly
help to shorten the exploration time and make it possible to use
more realistic data for the evaluation of selected designs. In each
of the experiments we performed, we were able to reduce the
number of required simulations with over 90% and save up to
50% on the required compilation time.

I. INTRODUCTION

Application-Specific Instruction-set Processors (ASIPs) are

commonly used in the newest generation smartphones and

tablets as well as in various cyber-physical devices. Their

design is a problem of primary relevance for the top seg-

ment of the high-tech industry. Design space exploration for

instruction-set design of an ASIP is a very complex problem,

involving a large set of possible architectural choices. Ex-

isting methods are usually handcrafted and time-consuming.

In our previous research we introduced and investigated a

rapid method to estimate the energy consumption of candidate

architectures for VLIW ASIP processors [1]. The proposed

method avoided the time-consuming simulation of the candi-

date architecture prototypes, without any loss of accuracy in

the predicted energy consumption, as long as changes in the

application profile were recognized correctly.

In this paper, we present an automated framework called

BuildMaster, which attempts to detect when changes in the

application profile happen and automatically decide when the

profile information is outdated. We call this technique simu-

lation caching, as it effectively caches simulation results and

relates them to variations in the code transformations applied

to the target application. The cached simulation results are then

used to accurately predict both the energy consumption and

cycle-count of the target application on the proposed VLIW

ASIP architecture. The BuildMaster framework also recog-

nizes when a newly proposed architecture is a variant of an

architecture which was investigated earlier in the exploration

and can decide when the former compilation results (and their

corresponding performance metrics) can be reused. We call

this second technique compilation caching. Our experiments
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show that both these techniques are very effective in reducing

the total architecture exploration time, and they both become

more effective for more and more complex problems using

larger, more realistic, test sequences.

This paper is organized as follows. In section II, we dis-

cuss some of the related work on both the simulation and

compilation caching. In section III, we briefly re-introduce

our architecture exploration techniques and efficient cost es-

timation methods from [1]. Section IV introduces our new

caching methods and section V experimentally evaluates their

effectiveness. Section VI concludes the paper.

II. RELATED WORK

Our ASIP architecture exploration method builds upon our

efficient method for energy estimation of ASIPs presented in

[1]. In our previous research we have shown that accurate

estimations of both the energy consumption and the applica-

tions cycle count can be obtained using only the assembly

listing and the application profile. Furthermore, we made the

observation that small changes in the processor architecture

usually result in only small changes, if any, of the applica-

tion profile. Combining these observations together with our

efficient cost estimation technique allowed us to develop an

efficient ASIP architecture exploration method which avoiding

many simulation runs. In [1], we presented two variations of

the cost estimation method: a) a completely static profile-based

estimation, which performed a single simulation run and which

handled only small changes in the profile, and b), a hybrid

estimation which performed a separate simulation for each

design but was still a more efficient method than the traditional

trace-based cost analysis. However, our previous paper did not

present any technique capable of automatically detecting when

changes happen to the application profile, making it difficult

to use the more efficient profile-based estimation in a reliable

way. This paper extends our previous research by proposing

and discussing an automatic framework which detects when

changes in the profile can be expected and automatically

extracts the updated profile information from a new simulation

run.

We have analyzed several other processor architecture ex-

ploration frameworks capable of automatic design space ex-

ploration (e.g. [2]–[6]). Most of these frameworks use the

traditional time-consuming approach of finding performance



estimates by simulating different architecture candidates and

analyzing the resulting application traces. To our knowledge,

[4] is the only work using profile-based estimation. However,

[4] only used this technique to compute the expected cycle-

count for the proposed processor architectures and did not

consider the energy consumption. Although, [6] uses a tech-

nique which stores the simulation trace of the application in

a database and uses the database to efficiently estimate the

energy-consumption of proposed processor architectures, this

technique is still very similar to the traditional time-consuming

trace-based estimation.

Several works consider caching for re-compilation (e.g. [7]–

[9]) but, no one of them the kind of compilation caching

proposed in this paper. We also analyzed related work in the

field of iterative compilation (e.g. [10]–[12]) as these works

consider an exploration somewhat similar to the architecture

exploration that we are performing. However, the only form of

cache mentioned in these works seems to refer to the instruc-

tion and data caches physically inside the target processor. No

references to the caching of intermediate compilation results

such as considered in this work was found.

From the above one can conclude that our ASIP architecture

exploration method represents a substantial novelty.

III. ARCHITECTURE EXPLORATION AND EFFICIENT COST

ESTIMATION
1

The ASIP architecture exploration process proposed in [1]

and [13], evaluates and selects VLIW ASIP architectures

according to a predefined template. Exploring the instruction-

set architecture of VLIW ASIPs is however much more

complex than for simple sequential (e.g. RISC) processors.

It involves a.o. decisions on the number of parallel issue-slots

the distribution of operations among the issue-slots.
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Fig. 1. Architecture template of a VLIW ASIP data-path and sequencer

Figure 1 shows the general structure of the processor

template. A VLIW ASIP data-path is composed of a set issue-

slots (IS), each containing one or more function-units (FU).

The data-path is controlled by a sequencer which executes

instructions from the program memory. The function-units

in the issue-slots implement the operations and can require

pipelining. Each issue-slot is capable of starting a new oper-

ation per cycle. The inputs of the operations are taken from

the register file (RF) connected to the issue-slot. The output

of the issue-slot can be connected to one or more register files

through the result select network (not shown in figure 1). Each

1 [1] presents a more verbose introduction on the topics presented in this
section

register file can have one or more input ports to allow parallel

writes to the register file. One or more local memories (not

shown in figure 1) can be present in the processor. These local

memories are accessed through a special load/store function-

unit (LSU). Only one LSU can be connected to a single local

memory.

Our ASIP architecture exploration method uses a shrinking

technique and assumes that an oversized ASIP architecture

specialized for a coarsely optimized version of the target

application (an initial prototype) is provided. This initial

prototype can either be the product of a coarse, high-level,

ASIP architecture exploration [14] or be hand-crafted by a

human designer. During our ASIP architecture exploration,

we are trying to compile the target application using only a

sub-set of the resources of the initial prototype. Any resource

that is not used in the compiled application is expected to be

removed in the final construction of the ASIP architecture. Our

architecture cost estimation model takes this into account by

ignoring any unused resources and correcting for partially used

resources. For example, it recomputes a) the required width of

the instruction memory, b) the required sizes of register files,

and c) the complexity of the remaining result select network.

Doing so, we have succeeded in producing exactly the same

cost estimates as when we apply our cost model on the actually

reduced architecture (only containing the required elements).

This allows us to accurately predict the cost of the proposed

architecture sub-sets without actually constructing them, and

saves a lot of time in the architecture exploration.

A. Efficient cost estimation

The selection of the design cost estimation method has been

shown [1] to have a large impact on the architecture explo-

ration time. Figure 2 illustrates the cost estimation methods

that were considered in [1]: the commonly used trace-based

method (figure 2a), our static profile-based method (figure 2b),

and the hybrid method (figure 2c).

In the trace-based approach (cf. figure 2a), the application

is compiled for the candidate processor architecture and the

resulting mapped application is simulated. Activity counts for

the components of the candidate architecture are collected

from a simulation trace, and the dynamic power cost of

the candidate is computed using these activity counts. This

approach has two disadvantages: 1) it requires a complete

simulation of each candidate prototype, and 2) the complete

simulation trace of the candidate prototype can be very large.

They both make the estimation time highly dependent on the

size and complexity of the target application and its test-data.

In our experiments, we found that trace-based estimation easily

becomes impractical, even for small applications, especially

when the cost estimation needs to be repeated for each

considered design point when exploring the ASIP architecture.

Our static profile-based method (cf. figure 2b) only needs

a single simulation run of the initial prototype to extract

its application profile consisting of the execution count of

each basic block of the application code. Based on this

information, we can compute the activity counts of each
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Fig. 2. Cost estimation methods for ASIP processors presented in [1]

architecture component by analyzing the activity within basic

blocks in the scheduled assembler output of the compiler, and

multiplying these activities with the execution count from the

application profile. This way, we avoid the problems associated

with a trace-based approach and can accurately predict the

application power consumption within milliseconds instead of

minutes or even hours. The application execution time can also

be predicted in a strictly analogous way within milliseconds.

However, the application profile may not be the same for

different compilations of the candidate prototype and it may

need to be adjusted to reflect performed transformations. This

is especially true when the code transformations affect the

control-flow structure of the candidate prototype, as such

transformations can influence the application’s profile. As

mentioned in [1], this problem can be trivially handled when

the compiler is capable of producing an updated profile during

the compilation process. However, many compilers do not have

this feature which forces our framework to detect changes in

the application profile through both the (debug) output of the

compilation and the structure of the produced assembly code.

A hybrid (cf. figure 2c) approach is also possible. The

hybrid approach uses the fast component activity computation

from the static profile-based estimation but extracts a new

application profile of the candidate prototype from a simu-

lation run. This method is more robust when it comes to code

transformations in the compilation process but does require a

simulation of each candidate prototype.

IV. COMPILATION AND SIMULATION RESULT CACHING

The BuildMaster framework provides an easy interface

to the compiler and simulator for our exploration routines

[13] and automates the caching of intermediate results. This

significantly simplifies the implementation of the architecture

exploration strategies and allows the developer of such strate-

gies to focus on the strategy itself and to ignore possible

negative effects on the exploration time from considering

equivalent architectures.

A. The compilation cache

The BuildMaster framework automatically recognizes when

two different architecture prototypes should result in the

same optimized design. The decision on ignoring the unused

resources in our cost model plays a critical role in this process,

as it allows different initial architectures to end up as the same

design point. Figure 3 illustrates this with an example. While

exploring a 3-issue VLIW processor we create a candidate

prototype which removes function unit FU3 from issue-slot 2

and FU2 from issue-slot 3. We notice that the compiler did

not require FU2 from issue-slot 1 and FU1 from issue-slot 3

(cf. figure 3a). When, later in the exploration, we try a similar

architecture but now also disable FU2 from issue-slot 1 we

expect that the result will be as shown in figure 3b and has the

same performance metrics as we found for the first situation.
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Fig. 3. Two equivalent architectures showing resources removed during the
selection of candidates (marked red) and unused resources after compilation
(marked yellow)

The compilation cache detects such cases by registering

which resources are unused for previous prototypes in cor-

respondence to the list of resources which were explicitly

disabled in that prototype. Any candidate architecture which

explicitly disables all resources that were also disabled in

the cached prototype plus a subset of its unused resources



is considered a hit on the compilation cache. The cost metrics

(energy, area, and cycle count) of the previous prototype are

returned immediately and no cost estimation is performed

on the new candidate. Candidate architectures which do not

provide a hit on the compilation cache will be added as new

entries after their cost has been estimated.

B. The simulation cache

The simulation cache builds upon our efficient cost esti-

mation method and is responsible for automatically switching

between the hybrid and profile-based cost estimation methods.

It keeps track of changes in key loop transformations (we

currently track changes in software pipelining) and will use

the hybrid method to update the application profile when

changes are detected. The detection of if-conversion (and other

transformations which remove basic-blocks) is handled by the

estimator itself and do not require an updated profile. The

BuildMaster framework is currently not able to properly detect

transformations such as loop unrolling or loop peeling as the

used compiler does not provide information about the effects

of these transformations in a useful way. Properly detecting

these transformations from the compiler output would either

require changes to the compiler output or an extensive analysis

of the generated assembly code and is considered to be outside

the scope of this work.

Previously extracted profiles are cached and indexed based

on a hash-table storing hashes of a string representation of the

loop transformations applied during their corresponding com-

pilation. This hash-table allows us to efficiently detect when an

applicable profile exists. When a matching profile is found, we

use the profile-based cost-estimation method. If such a profile

does not exist, we fall-back onto the hybrid method and add

the profile to the simulation cache for later use. This simple but

effective method allows us to reliably find applicable profiles

and can easily be extended when information regarding other

code-structure changing transformations becomes available.

V. EXPERIMENTS

We have implemented the BuildMaster framework and

integrated it into our design space exploration framework

[13]. This allowed us to test various cache configurations

under different exploration runs. In this section we compare

the differences between enabling and disabling either one

or both the compilation cache and the simulation cache.

Our experiments show the speedup of the total design space

exploration (cf. figure 4 and figure 5) as well as the cache

hit-rates when both caches are enabled (cf. figure 6).

The experiments have been performed using six applica-

tions from different application domains and having different

characteristics which have been prepared for usage with our

exploration framework. Two ECG hart-beat detection appli-

cations ECG-A and ECG-B (referred to as A and B in the

figures), two AES encryption and decryption applications,

one using a small test sequence (C) and one using a large

test sequence (D), 2D down sampling (E), and a low-pass

spatial filter (LPSF, F) were selected for the experiments.
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Fig. 4. A boxplot showing the exploration-time speedup ranges using
different caching strategies

Each application was explored using two different exploration

strategies (taken from [13]) referred to as best-match and first-

match. Both strategies perform a greedy search through the

processor architecture design space, first-match removing each

resource which brings an improvement on the design cost,

while best-match is considering all remaining alternatives for

the removal of a single resource and selecting the resource that

provides the largest gain. The experiments used the energy-

delay product as a criterion to guide the selection process but

other cost-functions should yield similar results with regard to

the cache performance.

A. Exploration time speedup

Figure 4 shows the obtained speedup for different architec-

ture exploration runs. We observed no cases where the addition

of either cache resulted in a slow-down of the exploration

(speedup < 1) and found that in most cases the exploration

time was significantly reduced. Especially, the exploration

time of the more complex applications seems to be strongly

decreased by the presence of the caches. The geometric mean

of the speedup when only using the compilation cache was 1.8,

when only using the simulation cache it was 1.7, and when

using both cache levels it was 3.0. From this we conclude

that both caches are roughly equally effective over our set of

experiments.

Looking in more depth into our experiments we see that

some of them show a greater benefit from the compilation

cache while some others benefit more from the simulation

cache. Figure 5 provides a more detailed view. Applications

C and D demonstrate the impact of the size of the input

data. Traditionally it costs a large amount of time to simulate

the target application with a large dataset, smaller datasets

are usually considered in an attempt to keep the design

space exploration time within reasonable bounds. However,

we noticed in our experiments that using a too small dataset

has a substantial impact on the quality of the final architecture.
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Fig. 5. Exploration-time speedup ranges using different caching strategies

Application D shows us (under both exploration strategies) a

that a larger architecture is found to be cost efficient for the

AES encryption when realistic input data is used. Applications

with a relatively small input size, and especially those with a

large final architecture (such as E and F) tend to have more

benefit from the compilation cache. This can be explained

through the size of the final architectures (5 and 7 issue-width

VLIW processors respectively) with a high specialization of

each issue-slot. Exploring such highly specialized wide VLIW

processors requires many small steps when exploring the

function-unit composition (i.e. defining which operations have

to be available in each issue-slot). These many small explo-

ration steps are more likely to trigger hits in the compilation

cache when a large architecture is considered. Furthermore,

applications E and F both have several kernels which are

software-pipelined, this makes the compilation and scheduling

problem for these applications more difficult and thus more

time consuming than for the other applications.

The influence of the input data size makes it difficult

to precisely compare the proposed caching methods to the

traditional exploration without caching. It is clear that a lot

can be gained and that this method allows for an efficient

usage of larger input datasets. This last feature substantially

helps us in creating new processor designs which are better

tuned to their specific usage but makes comparison based on

only the exploration time incomplete.

B. Cache hit-rates

The hit-rates of both caches may give us a better insight into

the actual benefits of the caching. Figure 6 shows the hit-rates

observed in our experiments for both caches. Observe that the

simulation cache is very effective and consistently gets hit-

rates above 90% for all of our experiments (95% on average).

This can be translated directly into the observed speedup as

it allows us to skip over 90% of the simulation runs when

compared to the traditional methods.
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Fig. 6. Observed cache hit-rates for two different architecture exploration
strategies

The speedup related to the compilation cache is more

difficult to quantify. From figure 6 we can see, for example,

that application E has a compilation cache hit-rate of approx-

imately 50%. While this does allow us to save quite some

exploration time, it does not fully explain the observed 4-6x

speedup in the exploration time measurements. A secondary

effect, referred to as caching induced exploration-path diver-

gence, is the cause of this.

C. Caching induced exploration path divergence

Caching induced exploration-path divergence is mainly ob-

served in the compilation cache but can also be seen in the

simulation cache. This divergence happens when a cached

value is returned which is different from the actual value

that would have been found without the cache. Table I gives

two example applications to illustrate these effects. Here we

observe the typical symptom of a caching induced exploration

path divergence: The total of cache hits and misses when

the cache is enabled does not always equal the total misses

when the cache is disabled. This implies that sometimes a

different number of design points is considered depending on

the fact if the compilation cache is enabled or not. This is a

clear sign of the caching induced exploration path divergence.

This divergence caused the exploration to find a different final

improvement for the LPSF application (application F) when

the compiler cache was enabled (cache configurations 1 and

2). We see a similar effect for the simulation cache with the

down-sampling application (application E) where we also find

that enabling the cache yields slightly different improvement

of the considered cost function (cache configurations 1 and 3).

In the simulation cache, exploration path divergence can

happen when the compiler uses a transformation which is not

properly detected by the simulation cache. In the case of the

down-sampling application (application E) the optimization to

blame was the loop peeling which was performed as part of



TABLE I
DETAILED EXPERIMENTAL RESULTS SHOWING CACHING INDUCED EXPLORATION PATH DIVERGENCE ON APPLICATIONS E AND F WHEN USING

FIRST-MATCH SEARCH. THE cache configuration COLUMN REFERS TO THE FOLLOWING CACHE CONFIGURATIONS: 1) BOTH CACHES ENABLED, 2)

COMPILATION CACHE ONLY, 3) SIMULATION CACHE ONLY, AND 4) BOTH CACHES DISABLED. THE TIME COLUMN PRESENTS THE TOTAL EXPLORATION

TIME IN SECONDS.

Compile cache Simulator cache final exploration result cache
benchmark hit-rate (%) hits misses hit-rate (%) hits misses improvement time configuration

Down-sampling 50.7 38 37 92.0 23 2 1.112918 801 1
48.1 38 41 — 0 29 1.122509 988 2
— 0 143 98.5 129 2 1.112918 4038 3
— 0 184 — 0 172 1.122509 5631 4

LPSF 21.0 17 64 93.1 54 4 4.324151 2940 1
21.0 17 64 — 0 58 4.324151 3229 2
— 0 195 96.8 183 6 4.379904 9514 3
— 0 195 — 0 189 4.379904 10485 4

the software-pipelining. In this application, one execution of a

loop kernel was moved from the loop core into the prologue,

resulting in a slightly decreased loop count. The BuildMaster

framework is currently not able to properly detect the loop

peeling transformation as no direct information on this kind

of transformations is available from the compiler output. We

observed only this single simulation cache induced divergence

in our experiments.

Our experiments show that the compilation cache is much

more susceptible to caching induced exploration path diver-

gence. Only for the most simple application in our benchmark

set (application A) the cache hits and misses add up to the

number of points considered when compilation caching is

disabled. Based on our experiments we can formulate our

hypothesis that the main reason for compilation cache induced

divergence is the sensitivity of the compiler heuristics to

the set of available resources. This can cause the compiler

to find a different schedule when a simplified version of

the same problem is presented. However, the exploration

path divergence was only observed in a single experiment

(application F), producing a different final design. It was also

only observed when the first-match heuristic was selected.

So far, we have only observed the above two cases where

the caching induced exploration path divergence resulted in a

different final design. However, in both these cases the cost of

the final design cost improvement found without caching was

approximately only 1% lower than the cost of the final design

found when using caching, while caching helped to greatly

reduce the total exploration time.

VI. CONCLUSION

In this paper we have presented and discussed the Build-

Master framework. This framework offers a very effective

and efficient automated caching of intermediate compilation

and simulation results during the design space exploration of

VLIW ASIPs. Both the compilation and the simulation cache

can facilitate the reduction of the architecture exploration

time and make it possible to efficiently use more realistic

larger datasets for the evaluation of the proposed designs.

The presented caching methods become more and more ef-

fective for larger applications using more realistic larger input

datasets. This is a very useful feature. Due to this feature

our framework can contribute towards the construction of

higher quality VLIW ASIPs better specialized to particular

applications, while at the same time strongly reducing their

design time.
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