374 Mediterranean Conference on Embedded Computing '™ MECO - 2014

Budva, Montenegro

Construction and Exploitation of VLIW ASIPs with
Multiple Vector-Widths

Erkan Diken, Roel Jordans, Lech J6Zwiak and Henk Corporaal
Eindhoven University of Technology
Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
Email: {e.diken, rjordans, l.jozwiak, h.corporaal } @tue.nl

Abstract—Many applications in important domains, such as
communication, multimedia, etc. show a significant data-level
parallelism (DLP). A large part of the DLP is usually exploited
through application vectorization and implementation of vector
operations in processors executing the applications. While the
amount of DLP varies between applications of the same domain
or even within a single application, processor architectures
usually support a single vector width. This may not be optimal
and may cause a substantial energy and performance inefficiency.
Therefore, an adequate more sophisticated exploitation of DLP
is highly relevant. This paper studies the construction and
exploitation of VLIW ASIPs with multiple vector widths.

I. INTRODUCTION

Computing platforms embedded in various modern devices
are often required to satisfy high performance demands when
processing data intensive applications. Moreover, embedded
systems of a portable equipment must also ensure a low energy
consumption, due to the limited battery life. The low energy
consumption and high performance can be achieved through
the usage of application specific instruction-set processors
(ASIPs). Since ASIPs are programmable, ASIPs can be re-
used for different application versions or even for different
applications in the same or similar domain. Modern system-
on-chip solutions (e.g. [1], [2]) targeting mobile computing
platforms include such programmable and customized ASIP-
based sub-systems.

The computing effectiveness and efficiency provided by
ASIPs can be boosted by the exploitation of the intrinsic
parallelism of a given application. In the context of single-
instruction multiple-data (SIMD)/very long instruction word
(VLIW) architectures, one of the important form of parallelism
to be exploited is the data-level parallelism (DLP). At the
instruction level, DLP refers to independent occurrences of the
same operation that can be executed on different data sub-sets.
DLP can be exploited through design and implementation of
SIMD instructions, also called vector instructions.

Vector processing is one of the main enablers of computing
effectiveness and efficiency due to its regular structure, and
low control and interconnect overhead. On the other hand,
the usage of vector units in the ASIP hardware is effective
and efficient only when the vector width of the hardware units
matches the natural DLP of the application. All the other cases
result in a loss of either efficiency or effectiveness. Former
research on application analysis ([3], [4], [S]) has shown that
different application kernels in important domains, such as
communications (e.g. FFT/IFFT, STBC, LDPC), multimedia
(e.g. MPEG4 audio decoding (AAC), 3D graphics rendering,

TABLE I: Maximum natural DLP analysis of some
multimedia and communication kernels and applications.

Kernel / application DLP
FFT/IFFT (fast/inverse-fast fourier transform) [4], AAC [3] 1024
STBC (space time block coding) [4] 4
LDPC (low-density parity check) [4] 96
Deblocking filter, inverse transform, motion compensation ([4]) 8
Intra-prediction [4] 16
3D graphics rendering [3] 128

H.264) etc. have different maximum natural DLPs. Table I
presents the DLP analysis of various applications and some
kernels being part of the these applications. Serving these
kernels or applications with an architecture which has a single
vector width may not be optimal and may cause a substan-
tial energy and performance inefficiency. Therefore, adequate
exploitation of DLP, and specifically adequate construction
and exploitation of ASIPs with multiple vector widths, is
highly relevant. In this paper, we study the construction and
exploitation of VLIW ASIPs with multiple vector widths.

The paper is structured as follows. In the next section, the
motivation of the work presented in this paper is explained.
The target ASIP architecture model used and its form with
multiple vector widths are explained in Section III. Section
IV briefly explains our new method and the related design
automation flow. Section V experimentally demonstrates the
applicability of our method and discusses the experimental
results. Related research is discussed in Section VI. Finally,
Section VII concludes the paper.

II. MOTIVATION

Deciding the architectural ASIP parameters related to vec-
torization should not only consider the DLPs of involved tasks
(kernels), but also should take the task-level parallelism (TLP)
and task mapping into account. Figure 1 is used to explain the
motivation of the work presented in this paper. For a given set
of tasks (T1, T2, T3, T4), each exhibiting a DLP, and prototype
processors (P1, P2), the following three possible cases can
be considered. In the case of Figure 1-(a), one processor
is allocated to run all the tasks in a sequential manner. In
this case, the processor prototype needs to be configured, by
considering all the tasks, in order to satisfy the required per-
formance, energy consumption and area. Vectorization related
architectural parameters (e.g. vector width (w1)) also needs to
be chosen appropriately by considering the DLPs of tasks and
required design metrics. For instance, w1l can be set to the
minimum DLP (8 for T3) or maximum DLP (64 for T4) of

374 Mediterranean Conference on Embedded Computing '™ MECO - 2014

Task set Prototype Processors

e @ @ @]

DLP j } DLP

Budva, Montenegro

SEQUENCER

DATA PATH

time slack
syne point

execution order
execution order

Fig. 1: (a) Sequential execution of tasks with different DLPs

on a single processor system (b) parallel execution of tasks

on a single processor system (c) parallel execution of tasks
on a multi-processor system

given tasks or any value in between. While executing these
four kernels, each selected w1l value will result in different
energy consumption and performance.

The Figure 1-(b) exemplifies another case in which tasks
are executed in a parallel and sequential order on a single
processor. As it can be seen from the Figure 1-(b), the task
pairs (T1, T2) and (T3, T4) are arranged to be executed in
sequential order, while the tasks in each pair run in parallel
to each other. This arrangement imposes mapping of T1 and
T3 to the same resources, while T2 and T4 exploit different
resources in the processor. In this case, the hardware units
which execute the task pair (T1, T3) can be specialized for
these tasks. Similarly, the hardware units which execute the
tasks T2 and T4 can be specialized only for these tasks. This
enables us to have two different vector widths (w1, w2) in a
single processor. In this paper, we study the construction and
exploitation of such ASIP processors which include two or
more vector widths.

Since there is a single control unit in a single processor,
efficient exploitation of the parallel hardware structure of the
architecture requires an adequate application code restructur-
ing. Listing 1 gives an example of such restructured code. As it
can be observed from the code, the tasks T1 and T2 are placed
in the body of one nested loop in order to have a parallel
execution of these tasks (computations carried out by the
tasks are not shown for the sake of simplicity). It is assumed
that there is no dependency between these tasks. The code
represents processing of two different images (image_inl
and image_in2) of certain heights and widths. The control
unit of the processor controls the execution of the code (e.g.
address computation, loop-flow control) and the data-path of
the processor realizes the actual computation (loop body).
Having architecture with different vector widths brings some
new challenges. Since the target ASIP architecture is a VLIW
machine capable of executing parallel software with a single
thread of control, in some circumstances, synchronization of
tasks is required. Due to the synchronization, time slacks may
be involved between tasks, as exemplified in Figure 1-(b).
Synchronization of the kernels has to be handled explicitly
by introducing an additional synchronization loop, as shown
in Listing 2. This loop ensures that the both input data sets are
completely processed when the program ends. Synchronization
loop is only required when the total numbers of iterations are
not equal for both kernels. This difference occurs if either two
kernels process data in portions of different sizes or the data
paths that execute two kernels differ in widths. The parameter

Fig. 2: Generic ASIP architecture template

(sync_factor) represents the factor of such difference. Equa-
tions 1 and 2 show the calculation of the sync_factor.

(widthxheight)image in1 (width*height)image in2

iterl = ol yiter2 = 03
(1)
iterl/z’terQ, iter2 < iterl
sync_factor =)
iter?/iterl, iter2>iterl

Figure 1-(c) demonstrates yet another case involving two
processors. It corresponds to a multi-processor sub-system.
The task arrangement and ordering are the same as in the case
(b). However, since parallel execution of the tasks is realized
with two independent threads of control, no synchronization
is needed in this case. As it can be seen from the Figure 1-
(c), the task T4 can be initiated just after the task T2 finishes.
Therefore, no time slack is involved. Moreover, vector widths
of each processor can be configured to be specific for the
executed kernel sets. The multi-processor system case is not
further discussed in this paper, as it is limited to construction
of a single ASIP.

Listing 1 An example of restructured C code
int image_inl[height] [width];
int image_in2[height] [width];
// Merged Kernels
for(ht = 0; ht < height; ht++) {
for(wd = 0; wd < width; wd++) {
Tl: image_outl[ht,wd] = image_inl[ht,wd];
T2: image_out2[ht,wd] = image_in2[ht,wd];

Listing 2 Merged kernels with synchronization loop
for(ht = 0; ht < height; ht++) {
for(wd = 0; wd < width; wd++) |
Tl: image_outl[ht,wd] = image_inl[ht,wd];
for(k = 0; k < sync_factor; k++) {
T2: image_out2[ht, wd, k, sync_factor]=
image_in2[ht, wd, k, sync_factor];

III. ARCHITECTURE MODEL

Figure 2 depicts a simplified view of the corresponding
generic ASIP architecture template. It includes a VLIW data-
path controlled by a sequencer (control unit) that uses status
(SR) and control registers (PC), and executes a program stored

374 Mediterranean Conference on Embedded Computing '™ MECO - 2014

data packing retargetable
& sync. compiler as:
I}

estimator

I (" vector-width Vector-width
j set S

architecture builder

! Tnitial
i architecture

Fig. 3: Tool-flow for exploring the (multiple) vector widths

in a local program memory. The data-path contains function
units organized in several parallel scalar and/or vector issue
slots (IS) connected via a programmable interconnect network
to register files (RF). The function units perform computation
operations on intermediate data stored in the register files. Only
function units in different issue slots can be triggered and
execute parts of an application in parallel. Local memories,
collaborating with particular issue slots, enable scalar access
for the scalar slots and vector or block access for the vector
slots. The numbers and kinds of function units, issue slots, reg-
ister files, memories, interfaces, etc. can be freely selected by
specifying component configuration parameters. The targeted
generic ASIP architecture allows us to construct architecture
instances involving multiple vector widths. In Figure 2, Cluster
1 and Cluster N correspond to two components of the VLIW
data-path with multiple vector widths. The execution units in
each cluster can support different functionalities (F'U; and
FUy) and have different widths (w; and ws).

IV. VECTOR-WIDTH EXPLORATION METHOD

The method focuses on finding the best possible set of
vector widths for a given parallelized version of the application
C code and coarse ASIP architecture. Figure 3 presents the
tool-flow used for the vector-widths exploration. The vector
width set to be explored and the directories that include
application and processor description files are provided as
inputs. The exploration includes the ASIP building, data pack-
ing/storing and synchronization, code compilation, simulation
and estimation steps for each vector width to be explored. A
cycle-accurate simulation of the C program is carried out in
order to estimate the performance value. We implemented our
new vector width exploration method as an EDA-tool, and
used this tool to perform a set of ASIP synthesis experiments.
The results of these experiments are discussed in the following
section.

V. EXPERIMENTAL EVALUATION

The kernels listed in Table II are used for the exploration.
The F2T kernel performs a 2-tap filtering on two vertical
successive pixels of an input image.The down-sampling kernel
(DownS) performs vertical and horizontal down sampling on
four neighbouring pixels of an input image. Table II lists two
versions of the F2T and DownS kernel sets. The kernels in each
set perform the same computation, but they exercise images
with different maximum DLPs (maxDLP). In this way, it is
aimed to demonstrate the relation between the maxDLP of
a particular kernel and vector width change of a processor.
Therefore, exploration is carried out separately for each of the
two kernel sets.

Budva, Montenegro

TABLE II: Kernels used for exploration

Set name Kernels maxDLP | Input image (height x width)
F2T F2T_1 32 64 x 32
F2T_2 64 64 x 64
DownS DownS_1 64 64 x 128
DownS_2 128 64 x 256

A base processor, which has one scalar IS and four vector
ISs with corresponding four local vector memories (VM),
is selected as the initial coarse processor. The pairs of ISs,
VMs and corresponding register files are grouped into one
cluster. This results in two clusters. The parallel execution of
the kernels is carried out on the base processor. The parallel
execution corresponds to running of the parallel versions (i.e.
merged kernels + synchronization loop) of the kernels. In
this way, two images can be processed in parallel. Clustering
allows us to set wl and w2 parameters at the cluster level.
The exploration was carried out for all the possible vector
width configurations, which resulted in 49 different ASIPs,
from vector width of 2 to 128. First of all, the synchronization
factor analysis of both kernel sets is carried out. Figure 4
presents the synchronization factor analysis of both F2T and
DownS kernels for these 49 (P7-P55) ASIPs. As can be seen
from the graph, the sync_factor varies between 1 and 64, and it
has the same values for both kernels for the most of the design
points. The designs which have lower sync_factor values are
expected to provide better performance results than the designs
which suffer from a high synchronization factor.

The first set of experiments corresponds to the vector-
width exploration for the F2T kernels. Figure 5 presents the
cycle counts for all design points. For the designs (P7-P11)
where the sync_factor is constant (2), the number of operations
decreases with increase of the vector width. The increase of
the vector width eliminates several operations (e.g. for address
computation, control-flow) otherwise required to execute the
loop. This results in a cycle count reduction. For the designs
(P12-P13) where the sync_factor is 1, the operation counts do
not change anymore. This is due to the fact that maxDLPs (32
and 64) of the kernels are lower or equal to the vector widths.
Therefore, the vector width increase from 64 to 128 does not
improve the performance. The sync_factor increase from P14
to P19 leads to the increase of the total number of operations.
In consequence, performance gets worse. When sync_factor
equals to 1 (e.g. P28, P55), the increase of the vector width
reduces the operation counts as expected, until the maxDLPs
of the kernels are lower or equal to the vector widths. The rest
of the design points follow a similar trend.

The second set of experiments corresponds to the vector-
width exploration for the DownS kernels. Figure 5 also
presents the cycle counts for the DownS kernels. It follows
similar trend as F2T depending on the values of vector
width and sync_factor. However, since maxDLPs of the down-
sampling kernels are 64 and 128, we do not see the limitation
due to the DLP, as it was the case for F2T kernels. Therefore,
the number of operations is decreased and performance is
improved from P7 to P12.

The goal of the vector-width exploration is to find the best
ASIP design which executes the four kernels effectively and
efficiently. The total cycle count of the ASIP designs executing

374 Mediterranean Conference

N
o

——DownS_VH -

o)
o o

n

IN
o

w

SYNC FACTOR
o

N
<}

=
o o

on Embedded Computing W' MECO - 2014

sync_factor

Budva, Montenegro

——F2T - sync_factor

R

A

I
¥

P10(16,16
P25 (4,128

P35(16,32
P36 16, 64
P37[16,128
P48 [64,32
P51(1284

P42
P43 [

ASIP DESIGNS

Fig. 4: Synchronization factor analysis of F2T and DownS kernels

Total Cycles

-
2
jas}
b}
n

30000

25000

a 23258
21755

20000

15000

¥ 1169

7842
—8009

10000

NUMBER OF CYCLES

6600

U

5000

|

o

F2T Cycles

—— DownS_VH Cycles

27372

=
8
g
B
"

LL&B\‘LZJ -

P10[16,16
P11(32,32
P12[64,64

el
03

: Cycle counts

all the kernels are presented in Figure 5. As a result, the ASIP
design points P13[128,128] and P49[64,128] are selected as
they both provide the two best performance values among
all the designs. The experiments showed that performance
is improved proportionally to vector width increase, but is
inversely proportional to the sync factor.

VI. RELATED WORK

Traditionally, DLP is implemented using vector processing
units with a single vector width, as in the cases of 32-wide
vector SODA [6], 8-wide vector Imagine [7] and 16-wide
vector NXP EVP [8] processors. Since the vector processing
with multiple vector widths is a quite new research topic,
we were able to find only a very limited set of publications
targeting this topic. In [4], an example architecture, referred to
as anySP, with configurable SIMD data-path which supports
wide and narrow vector lengths is proposed. However, it does
not focus on any method for exploring multiple vector widths,
as we do in our work. Another work presented in [9], referred
to as Libra, also focuses on construction of architectures with
different vector widths. It considers dynamic reconfiguration
of SIMD-width of the architecture based on the DLP charac-
teristic of loops. Dynamic configurability enables lane resource
to execute as a traditional SIMD processor, be repurposed to
behave as a clustered VLIW processor, or combinations in
between. In our work, we focus on the static configuration of
an ASIP architecture tailored to specific kernels or application.

VII. CONCLUSION & FUTURE WORK

In this paper, we proposed and discussed a novel design
method that aims at exploring and deciding the application-
specific vector widths for VLIW ASIPs. We also demonstrated
application of our method on a set of selected kernels. We

P31[8, 128]
P41[32,16
P42 (32,64

P43 (32,128

PS0
ps1
P52

ps3|

psa |
pss |

ASIP DESIGNS

of DownS, F2T kernels and total of them for different ASIP designs

implemented our new vector width exploration method as an
EDA-tool, and used this tool to perform a set of ASIP synthesis
experiments. The results of these experiments are demonstrated
and discussed.

REFERENCES
[1]

Software Programmable Media Processor, Movidius Myriad SoC,

“Project website.” [Online]. Available: http://movidius.com/

Intel Mobile SoCs
[Online]. Available:

[2] Programmable Image Signal Processor,
(Medfield, Clover Trail), “Project website.”

http://www.intel.com/

Y. Park, S. Seo, H. Park, H. K. Cho, and S. Mahlke, “Simd defragmenter:
efficient ilp realization on data-parallel architectures,” SIGARCH Comput.
Archit. News, vol. 40, no. 1, pp. 363-374, Mar. 2012.

M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner,
“Anysp: anytime anywhere anyway signal processing,” in Proceedings of
the 36th annual international symposium on Computer architecture, ser.
ISCA °09, 2009, pp. 128-139.

L. J6zwiak and Y. Jan, “Design of massively parallel hardware multi-
processors for highly-demanding embedded applications,” Journal of
Microprocessors and Microsystems, September 2013.

Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “Soda: A low-power architecture for software radio,”
SIGARCH Comput. Archit. News, vol. 34, no. 2, pp. 89-101, May 2006.

J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating
the imagine stream architecture,” in Proceedings of the 31st annual
international symposium on Computer architecture, ser. ISCA *04, 2004,
pp. 14—

K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and M. Weiss,
“Vector processing as an enabler for software-defined radio in handheld
devices,” EURASIP J. Appl. Signal Process., vol. 2005, pp. 2613-2625,
Jan. 2005.

Y. Park, J. Jong, K. Hyunchul, and P. S. Mahlke, “Libra: Tailoring SIMD
execution using heterogeneous hardware and dynamic configurability,” in
Proceedings of the 2012 IEEE/ACM 45th International Symposium on
Microarchitecture (MICRO-45), 2012.

(3]

[4]

[3]

[6]

(71

(8]

(9]

